This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 47. COUNTERION CONTROL OF THE CRYSTALLIZATION PATHWAY. PART 8. THE CRYSTALLIZATION BEHAVIOR OF [*trans*-Co(3, 2, 3tet)(NO₂)₂] CLO₄ (I), *trans*-Co(3, 2, 3-tet)(NO₂)₂] BR \cdot 3H₂O (II) AND [*trans*-Co(3, 2, 3-tet)(NO₂)₂]I (III) Long Barrely Forwards Va Chen Charth Solah S. Macanda

Ivan Bernal^a; Fernando Šomoza^{ab}; Ya-Chen Chen^{ab}; Salah S. Massoud^c ^a Department of Chemistry, University of Houston, Houston, Texas ^b Robert A Welch Foundation, ^c Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait

To cite this Article Bernal, Ivan , Somoza, Fernando , Chen, Ya-Chen and Massoud, Salah S.(1997) 'THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 47. COUNTERION CONTROL OF THE CRYSTALLIZATION PATHWAY. PART 8. THE CRYSTALLIZATION BEHAVIOR OF [*trans*-Co(3, 2, 3-tet)(NO₂)₂] CLO₄ (I), *trans*-Co(3, 2, 3-tet)(NO₂)₂] BR \cdot 3H₂O (II) AND [*trans*-Co(3, 2, 3-tet)(NO₂)₂] I (III)', Journal of Coordination Chemistry, 41: 3, 207 – 222 **To link to this Article: DOI:** 10.1080/00958979708023572

URL: http://dx.doi.org/10.1080/00958979708023572

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 47. COUNTERION CONTROL OF THE CRYSTALLIZATION PATHWAY. PART 8. THE CRYSTALLIZATION BEHAVIOR OF [trans-Co(3, 2, 3-tet)(NO₂)₂] CLO₄ (I), [trans-Co(3, 2, 3-tet)(NO₂)₂] BR · 3H₂O (II) AND [trans-Co(3, 2, 3-tet)(NO₂)₂]I (III)

IVAN BERNAL^{a,*}, FERNANDO SOMOZA^{a,†}, YA-CHEN CHEN^{a,†} and SALAH S. MASSOUD^{b,*}

^aDepartment of Chemistry, University of Houston, Houston, Texas 77204-5641, Bitnet: IBernal@UH.EDU; ^bDepartment of Chemistry, Faculty of Science, Kuwait University, P. O. Box No. 5969, Safat 13060, Kuwait

(Received 29 April 1996; Revised 8 July 1996; In final form 20 August 1996)

[*trans*-Co(3,2,3-tet)(NO₂)₂]ClO₄ (I, CoClO₈H₆C₈H₂₂, crystallizes, at 22°C, from a deionized water solution in space group $P2_1/n$ (a variant of No. 14), with lattice constants: a = 10.782(3), b = 9.198(3), c = 17.031(5) Å, $\beta = 105.30(2)^\circ$; V = 1629.14 Å³ and *d*(calc; MW = 424.69, Z = 4) = 1.731 g-cm⁻³. A total of 3217 data were collected over the range of 4° $\leq 20 \leq 50^\circ$; of these, 2393 (independent and with I $\geq (2.5\sigma(I))$ were used in the structural analysis. Data were corrected for absorption ($\mu = 12.70$ cm⁻¹) and the transmission coefficients ranged from 0.9163 to 0.9965. The final R(F) and R_w(F) residuals were, respectively 0.043 and 0.045. The cations exist in the lattice as enantiomeric pairs and the conformation of the central, five-membered ring for the molecule described here is $\delta(N2-C4-C5-N3 = +49.0^\circ)$. The secondary nitrogens are both R(or S). The ClO₄⁻ anion forms O....H bonds with a hydrogen of each of the two terminal –NH₂ groups, thus rendering those hydrogens different and the terminal nitrogens chiral. In the cation we used as the asymmetric unit, they are both *R*.

[*trans*-Co(3,2,3-tet)(NO₂)₂]Br · 3H₂O (**II**), BrCoO₇N₆C₈H₂₈, crystallizes at 22°C, from a deionized water solution in space group $P2_12_12_1$ (No. 19) with lattice constants: a = 18.352(10), b = 14.757(8), c = 6.497(2) Å; V = 1759.46 Å³ and d(calc; MW = 459.19, Z = 4) = 1.733 g-cm⁻³. A total of 2917 data were collected over the range of $4^{\circ} \ge 20 \le 60^{\circ}$; of these, 2175 (independent and with $I \ge 2.5\sigma(I)$) were used in the structural analysis. Data were corrected for absorption ($\mu = 32.918$ cm⁻¹) and the transmission coefficients ranged from 0.3266 to 0.4783. The final R(F) and R_w(F) residuals were,

^{*} Author for correspondence.

[†] Fellow of the Robert A Welch Foundation

respectively 0.056 and 0.061. The cations exist in the lattice pure enantiomers and the conformation of the central ring for the molecule described here is δ (N2-C4-C5-N3 = 47.9°). The chiral, secondary nitrogens are both *R*.

[*trans*-Co(3,2,3-tet)(NO₂)₂]I (III), ICoO₄N₆C₈H₂₂, crystallizes in total darkness, at 22°C, from a deionized water solution in space group *P*₂₁ or *P*₂₁/*m* with lattice constants: *a* = 6.451(6)(3), *b* = 15.253(18), *c* = 7.859(9) Å, β = 97.58(8)°; *V* = 766.59 Å³ and *d*(calc; MW = 452.138, *Z* = 2) = 1.959 g-cm⁻³. A total of 1720 data were collected over the range of 4° ≤ 20 ≤ 60°; of these, 292 (independent and with I ≥ 2.5σ(I)) were used in the structural analysis. Data were corrected for absorption (μ = 31.306 cm⁻¹) and the transmission coefficients ranged from 0.1983 to 0.5039. The quality of the crystal was so poor that only 17% of the collected data had I ≥ 2.5σ(I); therefore, data processing was abandoned.

Keywords: Conglomerate crystallization; racemates; mechanisms of crystallization; cobalt amines; trans-dinitro cobalt compounds; cobalt perchlorates cobalt halides

INTRODUCTION

Note: The ligand 3,2,3-tet is 1,5,8,12-tetraazadodecane.

Recently, we reported¹ the conglomerate crystallization of a series of compounds with composition [*trans*-Co(3,2,3-tet)X₂] $Y \cdot nH_2O$ (**IV**), $X = NO_2$, Y = Cl, n = 3; (**V**), X = Cl, $Y = NO_3$, n = 0; (**VI**), $X = NO_3$, $Y = NO_3$, n = 0) and suggested that their crystallization behavior exhibited some reasonable parallels with those of *trans* disubstituted macrocyclic cobalt amines, which also crystallized as conglomerates and share with (**IV**) \rightarrow (**VI**) a common Co(3,2,3-tet) fragment. However, we had no reasonable explanation for selection of that crystallization pathway since this is only the second² family of *trans*-disubstituted compounds observed to behave thus. Moreover, the conglomerate crystallization of the series [*trans*-Co(3,2,3-tet)X₂] $Y \cdot nH_2O$ despite changes of axial ligands, and counteranions, was totally new to us.

In order to further probe the effect of counter anions on the crystallization pathway of the $[trans-Co(3,2,3-tet)(NO_2)_2]^+$ cations, and hoping to understand the crystallization pathway, we have prepared a new group of these species whose structures and crystallization behavior we report herein.

EXPERIMENTAL

Syntheses

Compound (I): $[Co(3,2,3-tet)CO_3]ClO_4$ was prepared according to the procedure given earlier.³ It was converted to [*trans*-Co(3,2,3-tet)Br₂]ClO₄ by the addition

of aqueous HBr (48%; 20 mL) to a solution of the carbonate (1g/40 mL H₂O). The resulting solution was heated in a steam bath (30 min) and allowed to cool to room temperature. After a few days, green crystals were deposited. Compound (I) was obtained from [*trans*-Co(3,2,3-tet)Br₂]ClO₄ by the addition of two equivalents of NaNO₂, which was then heated in a steam bath (30 min) and allowed to crystallize at room temperature. After 5 days, red-brown crystals suitable for x-ray diffraction were obtained. The compound can also be made by adding the amine ligand to a solution of Na₃[Co(NO₂)₆] and heating in a water bath(30 min) addition of excess NaClO₄ causes (I) to crystallize.

Compound (II) was made from the dichloro chloride by addition of 2 moles of $NaNO_2^{1}$ followed by addition of excess NaBr to cause the compound to precipitate. The solid bromide was filtered, washed with cold water and ethanol and air dried. A saturated, golden brown solution in deionized water was set aside (22°C) and after some weeks a suitable crop of crystals was obtained.

Compound (III) was made from the dichloro chloride by the addition of 2 moles of NaNO₂¹ followed by the addition of excess Nal to cause the compound to precipitate. The solid was filtered, washed with cold water and ethanol and air dried. A saturated, golden brown solution in deionized water was set aside (22°C) in total darkness since we have previously observed photochemical decomposition, as well as geometrical rearrangements, of cobalt amine iodides⁴⁻⁶ in solutions which were exposed to laboratory light. After many failures to obtain useful crystals (see Results) we finally obtained a crystal of (III) which produced a reasonable cell. Other crystals tried produced the same values of *a* and *b* but widely different values of *c*, all of which were approximate multiples of the current value of *c*.

Elemental Analyses: Compound (I) was analyzed by the analytical laboratory of the University of Kuwait. Theory for CoClO₈N₆C₈H₂₂, C = 22.63, H = 5.22, N = 19.79. Found: C = 22.63, H = 5.22, N = 19.79. Compounds (II) and (III) were analyzed by Galbraith Laboratories.⁷ Compound (II), theory for BrCoO₇N₆C₈H₂₈: C = 20.93, H = 6.15, N = 18.30. Found: C = 20.87, H = 6.18, N = 18.27. Compound (III), theory for ICoO₄N₆C₈H₂₂: C = 21.25, H = 4.90, N = 18.59. Found C = 21.32 H = 4.92, N = 18.63.

Crystallography

Data were collected with an Enraf-Nonius CAD-4 diffractometer operating with a Molecular Structure Corporation TEXRAY-230 modification⁸ of the SDP-Plus software package.⁹ The procedure used for crystal alignment, cell constant determination, space group determination, and data collection were uniform for all three crystals. Processing of the data was carried out with the PC version of the NRCVAX package.¹⁰ Crystals were centered with data in the $20^{\circ} \le 20 \le 40^{\circ}$ range and examination of the cell constants, absences, and Niggli matrix¹¹ clearly showed (I) to crystallize in a primitive, monoclinic lattice whose systematic absences belong to those of the space group $P2_1/n$. Useful crystals of compound (II) crystallize in space group $P2_12_12_1$. Finally, many crystals of (III) had to be tested prior to finding one that indexed using all 25 reflections in a centered set (see below). For that crystal, systematic absences suggest it crystallizes in space groups $P2_1$ or $P2_1/m$ with cell constants very close to those of the pre-resolved, anhydrous, bromide reported by Payne.¹² Given that information and, since the latter choice implies a disordered system, we assumed the former.

The details of data collection are summarized in Tables 1, 2 and 3, respectively, for compounds (I), (II) and (III). The intensity data sets were corrected for absorption using empirical curves derived from psi scans^{8–9} of suitable reflections. The scattering curves were taken from Cromer and Waber's compilation.¹³

Space Group	<i>P</i> 2 ₁ /n (No. 14)
Cell Constants	a = 10.787(3)
	Å = 9.198(3)
	c = 17.031(5)
	$\beta = 105.30(2)^{\circ}$
Cell Volume	$V = 1629.86 \text{ Å}^3$
Molecular Formula	CoClO ₈ N ₆ C ₈ H ₂₂
Molecular Weight	424.69 gm-mole ⁻¹
Density (calc; $z = 4 \text{ mol/cell}$)	1.731 gm-cm ⁻³
Radiation Employed	$MoK_{\alpha} \ (\lambda = 0.71073 \text{\AA})$
Absorption Coefficient	$\mu = 12.645 \text{ cm}^{-1}$
Relative Transmission Coefficients	0.9163 to 0.9965
Data Collection Range	$4^{\circ} \leq 2\Theta \leq 50^{\circ}$
ScanWidth	$\Delta\Theta=0.95\pm0.35tan\Theta$
Total Unique Data Collected	3217
Data Used In Refinement*	2389
$\mathbf{R} = \sum \mathbf{F}_0 - \mathbf{F}_c / \sum \mathbf{F}_0 $	0.043
$Rw = [\Sigma w(F_0 - F_c)^2 / \Sigma F_0 ^2]^{1/2}$	0.045
Weights Used	$w = [\sigma(F_0)]^{-2}$

TABLE 1 Summary of Data Collection and Processing Parameters for $[trans-Co(3,2,3-tet)(NO_2)_2]ClO_4$ (1)

* The difference between this number and the total is due to subtraction of 828 that were standards, symmetry related or did not meet the criterion that $1 \ge 3\sigma$ (1).

Space Group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
Cell Constants	a = 18.352(10) Å
	b = 14.747(8)
	c = 6.497(2)
Cell Volume	$V = 1759.46 \text{ Å}^3$
Molecular Formula	$BrCoO_7N_6C_8H_{28}$
Molecular Weight	459.19 gm-mole ¹
Density (calc; $z = 4$ mol/cell)	1.733 gm-cm^{-3}
Radiation Employed	$MoK_{\alpha} (\lambda = 0.71073 \text{\AA})$
Absorption Coefficient	$\mu = 32.918 \text{ cm}^{-1}$
Relative Transmission Coefficients	0.3266 to 0.4783
Data Collection Range	$4^\circ \le 2\Theta \le 60^\circ$
ScanWidth	$\Delta \Theta = 0.95 + 0.35 \tan \Theta$
Total Unique Data Collected	2917
Data Used In Refinement *	2175
$\mathbf{R} = \sum \mathbf{F}_{\mathbf{O}} - \mathbf{F}_{\mathbf{C}} / \sum \mathbf{F}_{\mathbf{O}} $	0.056
$Rw = [\Sigma w(F_0 - F_c)^2 / \Sigma F_0 ^2]^{1/2}$	0.061
Weights Used	$w = [\sigma(F_0)]^{-2}$

TABLE II Summary of Data Collection and Processing Parameters for $[trans-Co(3,2,3\text{-tet})(NO_2)_2]$ Br \cdot $3H_2O$ (II)

* The difference between this number and the total is due to substraction of 742 that were standards, symmetry related or did not meet the criterion hat $I \ge 2.5\sigma$ (I).

Space Group	P2 ₁ (No. 4)
Cell Constants	a = 6.451(6) Å
	b = 15.253(18)
	c = 7.859(9)
	$\beta = 97.58(8)^{\circ}$
Cell Volume	$V = 766.59 \text{ Å}^3$
Molecular Formula	$ICoO_4N_6C_8H_{22}$
Molecular Weight	452.138 gm-mole ⁻¹
Density (calc; $z = 4 \text{ mol/cell}$)	1.959 gm-cm ⁻³
Radiation Employed	$MoK_{\alpha} (\lambda = 0.71073 \text{\AA})$
Absorption Coefficient	$\mu = 31.306 \text{ cm}^{-1}$
Relative Transmission Coefficients	0.1983 to 0.5039
Data Collection Range	$4^\circ \le 2\Theta \le 60^\circ$
ScanWidth	$\Delta \Theta = 1.00 + 0.35 \tan \Theta$

TABLE III Summary of Data Collection and Processing Parameters for $[trans-Co(3,2,3\text{-tet})\ (NO_2)_2]I\ (III)$

Total Unique Data Collected	1720	
Data Used In Refinement	292*	
$R = \sum F_0 - F_c / \sum F_0 $	Unfinished(see text)	
$Rw = [\sum w(F_0 - F_0)^2 / \sum F_0 ^2]^{1/2}$	Unfinished(see text)	

TABLE III (Continued)

* These are the only data with $l \ge 2.5\sigma(I)$

The structures of (I) and (II) were solved from their Patterson maps using their heaviest atom as the initial phasing species for a difference Fourier map. For (III) the Patterson map is consistent with the positions of Br and Co with Payne's¹² coordinates from the pre-resolved bromide; therefore we used them as trial coordinates and the refinement proceeds isotropically to 36%, but no further progress is made beyond that. Therefore, we suggest that the iodide (III) is a conglomerate showing the same crystal quality problems we have often encountered before with cobalt amine iodides. For details of these crystal quality problems encountered here, as well as by others, the reader is referred to our previous publications.^{4–6}

In the case of (I) and (II), the choice of space group is unequivocal and the Patterson maps easily revealed the positions of the heaviest atoms. After refinement of the scale factor and the positional parameters of the heavier atom, a difference Fourier map produced, in the first two cases, most of the non-hydrogen atoms. The remaining ones were found in subsequent difference maps. Heavy atoms were refined isotropically until convergence, at which point the hydrogen atoms of the cations were added at idealized positions (N-H, C-H = 0.95 Å) with fixed thermal parameters. Conversion of the heavy atoms to anisotropic motion resulted in refinement of the overall structure to final R(F) and R_W(F) factors listed in Tables 1 and 2. In the case of (II), the absolute configuration of the cations were determined by use of the Flack test (0.008). The hydrogen atoms of the waters of crystallization were located experimentally (in a final difference Fourier map) and fixed where found.

RESULTS AND DISCUSSION

The space groups for compounds (I) and (II) are unambigously determined by their systematic absences. Data collection, structural solution and data refinement proceeded smoothly. The phase diagram of compound (III) may share some common features with that of $[cis-Co(en)_2(NO_2)_2]$ I published by Yamanari, *et al*,¹⁴ who reported that this iodide can indiscriminately produce racemic and enantiomorphic crystals in the same crystallization batch. We know^{15(a)} that crystals of $[cis-Co(en)_2(NO_2)_2]$ I are mostly of extremely poor quality, and that

indexing them present problems. We also know that compounds of composition $[Co(abap)(NO_2)_2]X$ (abap = bis-(2-aminoethyl)aminopropylamine and $X = ClO_4^-$, PF_6^- , Cl are of excellent quality, whereas those with $X = 1^-$ are useless for crystallographic purposes.^{15(b)} The same can be said of the series $[Co(tren)((NO_2)_2]X$ (tren = tris(aminoethyl)amine and $X = Cl^-$, Br^- , ClO_4 (double salt), NO_3^- , BF_4^- which produces excellent specimens for crystallography, while the iodide crystals are useless.^{15(c)}

Figures 1 and 2 give labeled views of the asymmetric units found for molecules (I) and (II). Figures 3 and 4 depict the packing of the ions in their respective unit cells. Final positional and equivalent-isotropic thermal parameters are given in Tables 4 and 5 and bond length, angles, selected torsional angles and useful hydrogen bonds are listed in Tables 6 and 7.

FIGURE 1 The ions in the asymmetric unit of (I). The perchlorate anion was placed at that symmetry position in which it forms a hydrogen bond with H14 (2.417 Å) for clarity of depiction. The bonds O6...H22(2.255 Å) and O7...H1 (2.325 Å) are a little shorter (see Discussion and Table 6).

FIGURE 2 The ions and waters of hydration in the asymmetric unit of (II). Note the hydrogenbonded $Br(H_2O)_3$ cluster. Such cluster are hydrogen bonded to the amine hydrogens of the cation, thus linking cations as shown in the packing diagram (Figure 4). For details, see Table 7.

FIGURE 3 The packing of the ions in the unit cell of (I). The inversion center is at 1/2, 1/2; cations are held together by the agency of hydrogen bonds to anions lying in between them as depicted in the right side of the figure, near c = 1/2, where an oxygen is bonded to a terminal $-NH_2$ hydrogen while another oxygen of the same anion is bonded to a secondary -NH hydrogen of the cation directly above.

FIGURE 4 The packing of the contents of the unit cell of (II). In the region near a = 0.6, b = 0.75, a bromide anion forms a hydrogen bond with H2 and H22 of terminal $-NH_2$ fragments, then links to Hw2 of the water cluster which, in turn, links to an adjacent cation. Such a hydrogen-bonded web gives rise to a string of cations runing along the *a*-axis, at approximately b = 1/2.

	x	v	7	Biso
D.,	0.99210(7)	0.24141(7)	0.67507(10)	2 92(5)
	0.06310(7)	0.24141(7)	0.07507(19)	1.65(4)
	1.0618(4)	0.93669(7)	0.03090(17) 0.3127(14)	1.03(4)
	1.0018(4)	0.0903(0)	0.3127(14) 0.4201(10)	4.7(4)
02	0.0204(4)	1.0109(5)	0.4201(10) 0.2422(11)	3.0(3)
05	0.9200(4)	0.8691(3)	-0.3432(11)	3.3(3)
04	0.8342(4)	1.0022(5)	-0.2639(12)	4.0(3)
NI	0.9583(4)	0.8253(5)	0.0500(13)	2.5(3)
NZ N2	0.8701(4)	0.9697(6)	0.2148(11)	2.4(3)
N3	0.9530(4)	1.0933(4)	0.0197(12)	2.2(3)
N4	1.0480(4)	0.9532(5)	-0.1318(11)	2.2(3)
N5	1.0196(4)	0.9597(6)	0.2885(11)	2.8(3)
N6	0.9024(4)	0.9480(5)	-0.2206(10)	2.4(3)
CI	0.8868(5)	0.7753(6)	0.0569(16)	3.1(4)
C2	0.8392(6)	0.8063(7)	0.2301(17)	3.1(4)
C3	0.8106(5)	0.9009(8)	0.1979(18)	3.3(4)
C4	0.8405(6)	1.0626(7)	0.1957(18)	3.3(4)
C5	0.9027(6)	1.1282(6)	0.1753(18)	3.3(4)
C6	1.0209(5)	1.1461(6)	0.0240(17)	2.9(4)
C7	1.0738(6)	1.1180(7)	-0.1399(19)	3.4(4)
C8	1.1047(5)	1.0234(7)	-0.1062(16)	3.0(4)
Owl	0.7860(4)	0.3880(5)	0.9572(14)	4.2(3)
Ow2	0.7570(5)	0.3163(7)	0.3500(16)	5.3(4)
Ow3	0.6936(5)	0.4329(5)	0.6376(13)	4.3(4)
H1	0.984	0.809	0.170	3.3
H2	0.984	0.804	-0.068	3.3
H3	0.896	0.712	0.073	3.9
H4	0.862	0.785	-0.069	3.9
H5	0.799	0.766	0.242	3.9
H6	0.867	0.805	0.354	3.9
H7	0.775	0.913	0.299	4.1
H8	0.789	0.905	0.065	4.1
H9	0.890	0.964	0.349	3.2
H10	0.810	1.066	0.077	4.1
Н11	0.813	1.077	0.315	4.1
H12	0.927	1.134	0.303	4.1
H13	0.885	1.186	0.134	4.1
H14	0.931	1.103	-0.111	3.0
H15	1.009	1.208	0.005	3.7
H16	1.043	1.138	0.155	3.7
H17	1.049	1.119	-0.269	4.1
H18	1.113	1.160	-0.142	4.1
H19	1 124	1.020	0.029	3.8
H20	1 143	1.013	-0.203	3.8
H21	1.033	0.955	-0.272	3.0
1127	1.070	0.896	-0.103	3.0
Hwi	0 744	0.412	0.890	4.9
Hw2	0.796	0.423	1.077	49
Hwa	0.747	0.365	0.259	61
$H_W 4$	0.720	0.272	0.259	61
Hws	0.720	0.385	0.719	51
Hw6	0.073	0.410	0.513	5.1
11440	0.715	0.410	0.010	2.1

TABLE IV Atomic Parameters x,y,z and Biso. E.S.Ds. refer to the last digit printed

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid

	x	y	Z	Biso
Со	0.50278(5)	0.81706(6)	0.25904(3)	1.981(24)
Cl	0.72152(13)	0.19303(15)	0.47795(7)	4.28(6)
01	0.2358(3)	0.7931(4)	0.20157(23)	5.08(19)
02	0.7618(3)	0.8415(4)	0.33317(22)	5.10(18)
O3	0.2963(3)	0.9653(4)	0.28560(20)	4.56(18)
04	0.7247(3)	0.7029(4)	0.23162(21)	5.68(21)
05	0.7723(5)	0.3113(6)	0.4442(3)	9.7(3)
06	0.5941(4)	0.1735(6)	0.4304(3)	9.0(3)
07	0.7227(4)	0.2282(5)	0.55836(22)	7.3(3)
O8	0.7962(7)	0.0769(7)	0.4740(3)	16.0(5)
NI	0.5271(3)	0.8198(4)	0.37849(20)	2.90(16)
N2	0.4608(3)	0.6074(4)	0.24914(20)	2.60(16)
N3	0.4836(3)	0.8067(4)	0.14040(19)	2.62(15)
N5	0.3232(3)	0.8620(4)	0.24616(21)	2.84(16)
N4	0.5374(3)	1.0277(4)	0.26592(20)	2.82(16)
N6	0.6848(3)	0.7834(4)	0.27676(21)	2.81(17)
C1	0.5795(5)	0.6918(5)	0.4293(3)	3.78(22)
C2	0.5089(5)	0.5531(5)	0.3965(3)	3.91(22)
C3	0.5259(4)	0.5072(5)	0.3154(3)	3.36(22)
C4	0.4676(4)	0.5518(5)	0.1682(3)	3.42(21)
C5	0.4172(4)	0.6703(5)	0.1068(3)	3.49(21)
C6	0.4292(4)	0.9333(5)	0.0891(3)	3.42(20)
C7	0.5024(4)	1.0699(5)	0.1177(3)	3.56(21)
C8	0.4823(4)	1.1265(5)	0.1961(3)	3.30(22)
HI	0.445	0.839	0.387	3.7
H2	0.583	0.899	0.399	3.7
H3	0.668	0.681	0.431	4.6
H4	0.572	0.708	0.483	4.6
H5	0.420	0.568	0.391	4.8
116	0.540	0.477	0.435	4.8
H7	0.491	0.412	0.303	4.2
H8	0.615	0.505	0.318	4.2
H9	0.372	0.607	0.248	3.4
H10	0.554	0.530	0.169	4.2
H11	0.416	0.467	0.154	4.2
H12	0.327	0.681	0.098	4.2
H13	0.435	0.647	0.057	4.2
H14	0.570	0.797	0.138	3.4
H15	0.432	0.914	0.035	4.2
H16	0.342	0.946	0.091	4.2
H17	0.591	1.051	0.125	4.4
H18	0.475	1.142	0.077	4.4
H19	0.393	1.136	0.190	4.1
H20	0.522	1.219	0.207	4.1
H21	0.628	1.038	0.278	3.7
H22	0.508	1.063	0.310	3.7

TABLE V Atomic Parameters x,y,z and Biso. E.S.Ds. refer to the last digit printed

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid

	the second s	the second se								_
A.	Bond D	istances								
Co-	N1			1.973(7)		N2-C3		1.49	4(12)	
Co-	-N2			1.993(7)		N2C4		1.47	9(13)	
Co-	-N3			1.988(7)		N3—C5		1.46	2(13)	
Co-	-N4			1.982(7)		N3—C6		1.47	1(12)	
Co-	N5			1.986(7)		N4		1.47	8(11)	
Co-	N6			1.967(7)		C1C2		1.49	6(15)	
01-	N5			1.222(12)		C2C3		1.50	6(16)	
02-	- N5			1.213(11)		C4C5		1.50	3(16)	
03-	N6			1.225(10)		C6—C7		1 49	9(16)	
04-	N6			1.226(11)		C7C8		1.52	3(15)	
NI-	C1			1.505(12)		0, 0,		1.02		
<i>B</i> .	Bond Ar	ngles								
NI.	N	 >		23 2(3)		Co-N3-	-C5	110 1(6)		
N1_	$-C_0-N$	2	1	77.2(3)		$C_0 = N_3 =$	-06	119 7(6)		
NI_	$C_0 = N_c$	1	1	28.0(3)		C5_N3_	-C6	109.2(0)		
N1-		т 5	•	38.3(2)		CoN4_	-08	110 6(6)		
NI	- CoN	6		87 5(3)		Co N5	-01	117 5/7		
N2-	-Co-N	3	•	851(3)		CoN5	_02	1201(7)		
N2-		4	11	77 1(3)		01N5		120.1(7)		
N2"	CoN	י ל	1	89.0(3)		CoN6	_03	118 0(6)		
N2-		6		37.0(3)		$C_0 = N_0$	04	121 1(6)		
N2~		4		(3)		02 N6	-04	121,1(0)		
ND-	$-c_0 - N$	+ <		72.7(3)		NU C1	-04	110 /(0)		
IND: ND		5 4		93.9(4)		$NI \rightarrow CI = C2$	$-C_2$	112.4(8)		
IND-	-CO-N	0 6		7 0.3(3)		$U = U_2 = U_2$	-C3	112,3(9)		
IN4-		2	1	59.0(3) 37.((2)		N2	-02	100.0(8)		
N4-		6		87.6(3)		N2-C4-	-C5	109.0(8)		
N5-	-Co - N	6	1	/4.6(4)		N3-C5-	-04	108.2(8)		
Co-	-NI-CI		1	19.4(6)		N3	-C7	112.8(8)		
Co-	-N2-C.	3	1	19.6(6)		C6—C7–	-C8	113.1(9)		
Co-		4	11	08.8(6)		N4	-C7	111.3(8)		
<u>C3-</u>		4		10.9(7)		·····				
<i>C</i> .	Torsion	angles							·	
N2	Co	NI	C1	35.1(5)	N3	Co	N1	Cl	16.6(4)	
N4	Co	NI	C1	-146.9(7)	N5	Со	N1	Cl	124.1(6)	
N6	Co	N1	Cl	-59.2(5)	N1	Со	N2	C3	-35.9(5)	
NI	Co	N2	C4	-164.8(7)	N3	Co	N2	C3	141.9(7)	
N3	Co	N2	C4	13.1(5)	N4	Со	N2	C3	-171.6(7)	
N4	Co	N2	C4	59.6(5)	N5	Со	N2	C3	-124.1(6)	
N5	Co	N2	C4	107.0(6)	N6	Со	N2	C3	51.8(5)	
N6	Co	N2	C4	-77.1(6)	NI	Со	N3	C5	65.1(6)	
NI	Co	N3	C6	-167.2(7)	N2	Со	N3	C5	13.3(5)	
N2	Co	N3	C6	140.9(6)	N4	Со	N3	C5	-164.6(7)	
N4	Co	N3	C6	-36.9(5)	N5	Co	N3	C5	-75.4(6)	
N5	Co	N3	C6	52.3(5)	N6	Со	N3	C5	107.7(6)	
N6	Co	N3	C6	-124.6(6)	N1	Со	N4	C8	-144.1(6)	
N2	Co	N4	C8	-8.4(4)	N3	Со	N4	C8	38.0(5)	
N5	Co	N4	C8	-55.8(5)	N6	Со	N4	C8	128.4(6)	
NI	Co	N5	01	31.7(5)	NI	Со	N5	02	-141.8(7)	
N2	Co	N5	Ol	125.0(7)	N2	Co	N5	02	-48.6(5)	
N3	Co	N5	ol	-150.0(7)	N3	Co	N5	02	36.4(5)	
N4	Co	N5	01	-57.2(5)	N4	Co	N5	02	129.3(7)	
N6	Co	N5	OI	-5.7(5)	N6	Co	N5	02	-179.3(7)	

TABLE VI Bond Distances (Å) and Angles (°)

Nł	Co	N6	03	-41.6(5)	N1	Co	N6	04	143.3(7)	
N2	Co	N6	O3	134.6(7)	N2	Co	N6	O4	50.3(5)	
N3	Co	N6	O3	140.3(7)	N3	Co	N6	O4	-34.8(5)	
N4	Co	N6	O3	47.4(5)	N4	Co	N6	O4	-127.7(7)	
N5	Co	N6	O3	-4.1(4)	N5	Co	N6	O4	-179.2(7)	
Co	N1	Cl	C2	-55.1(6)	Co	N2	C3	C2	55.6(6)	
C4	N2	C3	C2	-176.5(11)	Co	N2	C4	C5	-36.3(5)	
C3	N2	C4	C5	-169.9(11)	Co	N3	C5	C4	-36.3(5)	
C6	N3	C5	C4	-169.2(11)	Co	N3	C6	C7	55.5(6)	
C5	N3	C6	C 7	-176.5(11)	Co	N4	C8	C7	-56.3(6)	
N1	Cl	C2	C3	69.3(8)	Cl	C2	C3	N2	-69.4(8)	
N2	C4	C5	N3	47.9(6)	N3	C6	C7	C8	-67.9(8)	
C6	C7	C8	N4	67.8(8)						
D.	Hydrog	en Bond I	Distances	s (less than 2.5)	ŝ)					_
Intra	ı-Moleci	ular		Inter	-Molecu	lar				
H1 t	o O1			2.13			H9 to	H9 to O3 2.35		
H2 t	o O3			2.47			H21 to O2 2.24			
H9 t	o O2			2.38			H22 te	o Br	2.49	
H14	to O4			2.28						
H21	to O3			2.33						
Inter	-Moleci	ular Bond	s of Wa	ter		_				
Hwl to Ow3 1.91										
Hw2 to Ow2 2.48										
Hw2	to Ow3	3		2.17						
Hw3	to Owl	l		2.12						
Hw6	to Ow2	2		1.92						

TABLE VI (Continued)

TABLE VII	Bond Distances	(Å) and	i Bond	Angles	(°)
-----------	----------------	---------	--------	--------	-----

A. Bond Distances			
CoN1	1.982(3)	O4—N6	1.224(5)
CoN2	1.978(3)	N1-Cl	1.482(6)
Co-N3	1.978(3)	N2C3	1.482(5)
CoN5	1.935(3)	N2-C4	1.489(5)
CoN4	1.971(3)	N3-C5	1.483(5)
CoN6	1.930(3)	N3-C6	1.481(5)
Cl05	1.407(5)	N4C8	1.490(5)
Cl—O6	1.410(5)	C1C2	1.515(7)
Cl-07	1.404(4)	C2—C3	1.502(6)
Cl08	1.350(5)	C4C5	1.509(7)
O1N5	1.220(5)	C6C7	1.495(7)
O2N6	1.215(5)	C7—C8	1.501(7)
O3N5	1.241(5)		
B. Bond Angles			
NI-Co-N2	93.74(14)	Co-N2-C3	119.3(3)
N1-Co-N3	177.45(14)	Co-N2-C4	110.33(25)
N1CoN5	88.33(14)	C3	111.2(3)
N1CoN4	87.41(14)	CoN3C5	110.2(3)
N1CoN6	89.32(14)	Co-N3-C6	118.9(3)
N2CoN3	84.60(14)	C5-N3-C6	111.2(3)
N2CoN5	89.94(14)	CoN5O1	123.0(3)
N2CoN4	177.61(14)	Co-N5-O3	118.2(3)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>C6</u>	<u>C7</u>	C8	N4	66.8(3)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2	C4	C5	N3	49.0(2)	N3	C6	C7	C8 –7	1.4(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NI	C1	C2	C3	65.9(3)	Cl	C2	C3	N2 -6	9.0(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C5	N3	C6	C7	-174.9(4)	Co	N4	C8	C7 –4	8.7(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6	N3	C5	C4	-173.1(4)	Co	N3	C6	C7 5	5.6(2)
$\begin{array}{ccccc} NS & 93.27(14) & Ol-NS-O3 & 118.8(3) \\ N3-Co-NS & 93.60(14) & Co-N6-O2 & 120.4(3) \\ N3-Co-NS & 94.32(14) & Co-N6-O2 & 120.4(3) \\ N3-Co-N6 & 88.84(14) & Co-N6-O4 & 120.7(3) \\ N5-Co-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-Co-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-Co-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O6 & 106.8(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O7 & 108.4(3) & N3-C5-C4 & 107.1(3) \\ O6-C1-O7 & 110.2(3) & N3-C6-C7 & 112.1(3) \\ O6-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.0(4) & C6-C7 & 112.2(3) \\ C-N1-C1 & 121.1(3) & N4-C8-C7 & 112.2(3) \\ C-N1-C1 & 121.1(3) & N4-C8-C7 & 112.2(3) \\ N4-C8-C7 & 112.2(3) & N4-C8-C7 & 112.3(3) \\ N6 & C0 & N1 & C1 & 33.2(2) & N3 & C0 & N1 & C1 & -16.2(2) \\ N5 & C0 & N1 & C1 & 33.2(2) & N3 & C0 & N2 & C3 & 143.(3) \\ N6 & C0 & N1 & C1 & -60.0(2) & N1 & C0 & N2 & C3 & -135.0(2) \\ N1 & C0 & N2 & C4 & -165.5(3) & N3 & C0 & N2 & C3 & -123.3(3) \\ N3 & C0 & N2 & C4 & 12.5(2) & N5 & C0 & N2 & C3 & -123.3(3) \\ N4 & C0 & N2 & C4 & -165.2(3) & N3 & C0 & N2 & C3 & -123.3(3) \\ N4 & C0 & N2 & C4 & 75.8(2) & N6 & C0 & N2 & C3 & -123.3(3) \\ N4 & C0 & N3 & C6 & -165.3(3) & N2 & C0 & N3 & C5 & 64.7(2) \\ N1 & C0 & N3 & C6 & -165.3(3) & N2 & C0 & N3 & C5 & 64.7(2) \\ N1 & C0 & N3 & C6 & -165.3(3) & N2 & C0 & N3 & C5 & 64.7(2) \\ N1 & C0 & N3 & C6 & -165.3(3) & N2 & C0 & N3 & C5 & 64.7(2) \\ N1 & C0 & N3 & C6 & -121.4(3) & N1 & C0 & N3 & C5 & 64.7(2) \\ N1 & C0 & N3 & C6 & -32.7(2) & N6 & C0 & N3 & C5 & -162.7(3) \\ N4 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N5 & O1 & -35.7(2) \\ N2 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N5 & O1 & -48.9(2) \\ N3 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N5 & O1 & -35.4(2) \\ N3 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N4 & C8 & -152.0(3) \\ N4 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N4 & C8 & -152.0(3) \\ N4 & C0 & N5 & O3 & -37.3(2) & N6 & C0 & N5 & O1 & -35.4(2) \\ N3 & C0 & N6 & O2 & -130.7(3) & N2 & C0 & N6 & O4 & -142.8(3) \\ N2 & C0 & N6 & O2 & -130.7(3) & N2 & C0 & N$	C3	N2	C4	C5	-171.7(4)	Co	N3	C5	C4 -3	9.1(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4	N2	C3	$\tilde{C2}$	-174.3(4)	Čõ	N2	C4	C5 -3	6.9(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Co	NI	Cĩ	$\tilde{C2}$	-50.8(2)	Co	N2	C3	C2 5	5 6(2)
$\begin{array}{ccccc} N2 = Co-N6 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-Co-N5 & 93.60(14) & Co-N4-C8 & 121.5(3) \\ N3-Co-N4 & 94.32(14) & Co-N6-O2 & 120.4(3) \\ N3-Co-N6 & 88.84(14) & Co-N6-O4 & 120.7(3) \\ N5-Co-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-Co-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-Co-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O7 & 110.2(3) & N3-C5-C4 & 107.1(3) \\ O6-C1-O7 & 110.2(3) & N3-C6-C7 & 112.1(3) \\ O6-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C-O8 & 112.2(3) & N4-C8-C7 & 112.2(3) \\ C-N1-C1 & 121.1(3) & N4-C8-C7 & 112.2(3) \\ \hline \hline \\ \hline $	N4	Co	N6	$\tilde{02}$	50 5(2)	N4	Co	N6	04 = 10	97(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N5	Co	N6	$\tilde{02}$	15.5(2)	N5	Co	N6	04 - 16	2.7(<i>2)</i> 4.6(3)
$\begin{array}{c ccccc} N2 \\ N3 \\ -C0 \\ -N5 \\ N3 \\ -C0 \\ -N5 \\ Sigma \\ N3 \\ -C0 \\ -N5 \\ Sigma \\ Sigma \\ N3 \\ -C0 \\ -N6 \\ Sigma \\ N3 \\ -C0 \\ -N6 \\ Sigma \\$	N3	Co	N6	02	144.8(3)	N3	Co	N6	04 -3	5.1(2) 5.4(2)
$\begin{array}{c ccccc} N2 = & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	N2	Co	N6	$\frac{02}{02}$	-37.0(2) -130.7(3)	N2		NG	04 14	4.0(<i>3)</i> 0.1 <i>(2</i>)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NH	Co	IN4 NG		-03.0(2)	IND		IN4 NG		0.0(3) 2.8(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INZ NIS		1N4 N/4		-33.2(2)	IN S NIG		IN4 N4		9.9(2) 9.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO NO		NJ NJ	03	-2.4(2)	IN I N 2		IN4 NI4	-13	2.0(3) 0.0(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N6	C0	NS	03	-24(2)	INO NI 1		IND MA		0.U(3) 2.D(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/		INJ NIS	03	-131.3(3)	IN4 NG		IND NIS	01 14	5.1(5) 8.0(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N2	Co	IND NIS	03	-131 5(3)	1N.3 N/4		NS NS		0.7(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INT VID		IND MS	03	50.1(2)	NZ N2		ND NE	01 -3	5.7(2) 8.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NI NI	Co	N5	03	-121.4(3)	IN I NO	Co	N5	01 - 12	9.3(3) 5.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194 Ni4		IND NI2		-32.7(2)	IND		IN J NE		0.0(3) 0.5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIA		IND NI2	0	-32.0(2)	IN4 NIZ		IN D NID	-10.	2.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5	Co	IND EN	C6 C6	143.2(3)	IND NIA	Co	1N.3 N 2	-12	+.4(2) 7 7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2		N3	C0 C6	-105.5(3) 145 2(3)	N5		N2	C5 7	5.2(2) 4 A(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NI	Co	N3	C4 C6	-165.0(2)	N2	Co	N3	C5 04	T.7(4) 5 2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6	Co	N2	C4	-76.0(2)	N1	Co	N3	C5 5	4.0(<i>4</i>)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	Co	N2		75 8(2)	N6	Co	N2	$C_3 = 15$	2.7(2) 4.6(2)
$\begin{array}{cccccc} N2 & 01 & 01 & N5 & 03 & 118.8(3) \\ N3 & -C0 & N5 & 93.60(14) & C0 & -N4 & -C8 & 121.5(3) \\ N3 & -C0 & -N4 & 94.32(14) & C0 & -N6 & -O2 & 120.4(3) \\ N3 & -C0 & -N6 & 88.84(14) & C0 & -N6 & -O4 & 120.7(3) \\ N5 & -C0 & -N6 & 176.14(15) & N1 & -C1 & -C2 & 112.1(4) \\ N5 & -C0 & -N6 & 176.14(15) & N1 & -C1 & -C2 & 112.1(4) \\ N4 & -C0 & -N6 & 106.8(3) & N2 & -C3 & -C2 & 112.1(3) \\ O5 & -C1 & -O6 & 106.8(3) & N2 & -C3 & -C2 & 112.1(3) \\ O5 & -C1 & -O6 & 106.8(3) & N2 & -C4 & -C5 & 107.3(3) \\ O5 & -C1 & -O8 & 106.9(4) & N3 & -C5 & -C4 & 107.1(3) \\ O6 & -C1 & -O8 & 112.0(4) & C6 & -C7 & -C8 & 113.2(4) \\ O7 & -C1 & -O8 & 112.2(3) & N4 & -C6 & -C7 & 112.1(3) \\ \hline $	N5	Co	N2	C4	12.3(2) 106 2(2)	N4	Co	N2	$C_3 = 12$	3.7(3)
$\begin{array}{ccccccc} N26 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-C0-N5 & 93.60(14) & C0-N4-C8 & 121.5(3) \\ N3-C0-N4 & 94.32(14) & C0-N6-O2 & 120.4(3) \\ N3-C0-N6 & 88.84(14) & C0-N6-O4 & 120.7(3) \\ N5-C0-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-C0-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-C0-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O8 & 106.9(4) & N3-C5-C4 & 107.1(3) \\ O6-C1-O7 & 110.2(3) & N3-C6-C7 & 112.1(3) \\ O6-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.2(3) & N4-C8-C7 & 112.2(3) \\ \hline $	N3	Co	N2	C4	12 5(2)	N5		N2	$C_{3} = 12$	3 3(3)
$\begin{array}{ccccccc} N26 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-C0-N5 & 93.60(14) & C0-N4-C8 & 121.5(3) \\ N3-C0-N4 & 94.32(14) & C0-N6-O2 & 120.4(3) \\ N3-C0-N6 & 88.84(14) & C0-N6-O4 & 120.7(3) \\ N5-C0-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-C0-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-C0-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O7 & 110.2(3) & N3-C6-C7 & 112.1(3) \\ O6-C1-O7 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.2(3) & N4-C8-C7 & 112.2(3) \\ C-Torsion angles & & & & & & \\ \hline \hline \begin{array}{c} N2 & C0 & N1 & C1 & 33.2(2) & N3 & C0 & N1 & C1 & -16.2(2) \\ N5 & C0 & N1 & C1 & 123.1(3) & N4 & C0 & N1 & C1 & -148.9(3) \\ N6 & C0 & N1 & C1 & 123.1(3) & N4 & C0 & N1 & C1 & -148.9(3) \\ N6 & C0 & N1 & C1 & 60.0(2) & N1 & C0 & N1 & C1 & -148.9(3) \\ \end{array}$	NI	Co	N2		-165.5(3)	N3		N2	$C_3 = -3$	$\frac{3.0(2)}{2.1(2)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N6	C0	NI	CI	-60.0(2)	NI	Co	NO	$C_1 = 14$	5 0(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NS	Co	NI		33.2(2) 173 1(3)	1N.5 N14	Co	NI	$C_{1} = 14$	0.2(2) 8.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	<u>`</u>	, N1		33.2(2)	N3	<u> </u>	N1	<u>C1</u> 1	<u> </u>
$\begin{array}{ccccccc} N26 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-C0-N5 & 93.60(14) & C0-N4-C8 & 121.5(3) \\ N3-C0-N4 & 94.32(14) & C0-N6-O2 & 120.4(3) \\ N3-C0-N6 & 88.84(14) & C0-N6-O4 & 120.7(3) \\ N5-C0-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-C0-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-C0-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O8 & 106.9(4) & N3-C5-C4 & 107.1(3) \\ O6-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C1-O8 & 112.0(4) & C6-C7-C1 & 112.2(3) \\ C0-N1-C1 & 121.1(3) \\ \end{array}$	<u>С</u> .	Torsion and	les	_						
$\begin{array}{ccccccc} N26 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-C0-N5 & 93.60(14) & C0-N4-C8 & 121.5(3) \\ N3-C0-N4 & 94.32(14) & C0-N6-O2 & 120.4(3) \\ N3-C0-N6 & 88.84(14) & C0-N6-O4 & 120.7(3) \\ N5-C0-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-C0-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-C0-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ O5-C1-O8 & 106.9(4) & N3-C5-C4 & 107.1(3) \\ O6-C1-O8 & 112.0(4) & C6-C7-C8 & 113.2(4) \\ O7-C-O8 & 112.2(3) & N4-C8-C7 & 112.2(3) \\ \end{array}$	Co-	–N1––Cl		121.1((3)				· (-)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07-	Cl08		112.2(3)	N4	C8—C7		112.2(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06-	-C108		112.00	4)	C6—	C7		113.2(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06-	C1O7		110.2	(3)	N3	C6—C7		112.1(3)	
$\begin{array}{ccccccc} N2 & 93.27(14) & O1-N5-O3 & 118.8(3) \\ N3-C0-N5 & 93.60(14) & C0-N4-C8 & 121.5(3) \\ N3-C0-N4 & 94.32(14) & C0-N6-O2 & 120.4(3) \\ N3-C0-N6 & 88.84(14) & C0-N6-O4 & 120.7(3) \\ N5-C0-N4 & 87.99(14) & O2-N6-O4 & 118.9(4) \\ N5-C0-N6 & 176.14(15) & N1-C1-C2 & 112.1(4) \\ N4-C0-N6 & 88.84(14) & C1-C2-C3 & 113.9(4) \\ O5-C1-O6 & 106.8(3) & N2-C3-C2 & 112.1(3) \\ O5-C1-O7 & 108.4(3) & N2-C4-C5 & 107.3(3) \\ \end{array}$	O5-	C1O8		106.9((4)	N3	C5—C4		107.1(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05-	C1O7		108.4	(3)	N2—	C4—C5		107.3(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05-	-C106		106.8	(3)	N2	C3—C2		112.1(3)	
$\begin{array}{ccccccc} N2 & 93.27(14) & O1 \\ \hline N3 \\ \hline N3 \\ \hline C0 \\ \hline N4 \\ \hline N5 \\ \hline C0 \\ \hline N4 \\ \hline N5 \\ \hline C0 \\ \hline N4 \\ \hline N5 \\ \hline C0 \\ \hline N4 \\ \hline N5 \\ \hline C0 \\ \hline N6 \\ \hline $	N4-			88.84	4(14)	C1—	C2C3		113.9(4)	
N2-CoN6 $93.27(14)$ O1N5O3 $118.8(3)$ N3CoN5 $93.60(14)$ CoN4C8 $121.5(3)$ N3CoN4 $94.32(14)$ CoN6-O2 $120.4(3)$ N3CoN6 $88.84(14)$ CoN6-O4 $120.7(3)$ N5CoN4 $87.99(14)$ O2N6-O4 $118.9(4)$	N5-	CoN6		176.14	4(15)	N1—	C1—C2		112.1(4)	
N2-CoN6 $93.27(14)$ O1N5O3 $118.8(3)$ N3CoN5 $93.60(14)$ CoN4C8 $121.5(3)$ N3CoN4 $94.32(14)$ CoN6-O2 $120.4(3)$ N3CoN6 $88.84(14)$ CoN6O4 $120.7(3)$	N5-	CoN4		87.99	9(14)	02	N6-04		118.9(4)	
N2-CoN6 93.27(14) O1N5O3 118.8(3) N3CoN5 93.60(14) CoN4C8 121.5(3) N3CoN4 94.32(14) CoN6O2 120.4(3)	N3-	-Co-N6		88.84	4(14)	Co	N604		120.7(3)	
N2—Co—N6 93.27(14) O1—N5—O3 118.8(3) N3—Co—N5 93.60(14) Co—N4—C8 121.5(3)	N3-	CoN4		94.32	2(14)	Co	N6—O2		120.4(3)	
N2-Co-N6 93.27(14) O1-N5-O3 118.8(3)	N3-	CoN5		93.60	0(14)	Co	N4		121.5(3)	
	N2-			93.2	7(14)		N503		118.8(3)	

H1 to O7

H9 to O2

H21 to O4

H22 to O6

2.32

2.19

2.23

2.25

2.33

2.26

2.16

2.47

TABLE VII (Continued)

HI to O2

H9 to Ol

H14 to O4

H14 to O5

TABLE	VII (Continued)
-------	-------	------------

H21 to O3	2.35	
H22 to O2	2.38	

Compound (I) is the first derivative of the class $[trans-Co(3,2,3-tet)X_2]$ $Y \cdot nH_2O$ to crystallize as a racemate which emphasizes the control counter ions exert in the mode of crystallization selected by a chiral cation. This is interesting in view of the fact that $[trans-Co(3,2,3-tet)X_2]Y \cdot nH_2O$ (IV), $X = NO_2$, Y = Cl, n = 3; (V), X = Cl, $Y = NO_3$, n = 0; (VI), $X = NO_2$, $Y = NO_3$, n = 0), as well as (II), crystallize as conglomerates. In fact (VI) differs from (I) only by a change from NO_3^- to ClO_4^- which is a rather subtle change since as both contain oxo-anions as their counter ion. In fact, the difference is a reduction in hydrogen bonding power in the case of the perchlorate, suggesting that this diminishing power to link cations is the origin of the change in crystallization pathway. If this is, indeed, the origin of the change, it would be surprising to find that the chloride (V), bromide (II) and iodide (III) are also conglomerates since their anions are not particularly powerful hydrogen-bonding species; this is specially true of the last two examples cited above.

If not hydrogen-bonding power, what causes the change in crystallization mode? A comparison of the packing features of (I) and (II) show that, whereas the latter has cations linked into an infinite string with spiraling O₂N-Co-NO₂ vectors, the former does not. In fact, such a spiraling string has been observed in every case of conglomerate crystallization we have studied, irrespective of the nature of the compound. Aside from the multitude of charged coordination compounds we have studied, we observed the same phenomenon in neutral ones¹⁶, as well as in organometallic compounds¹⁷ and organic compounds.¹⁸ These spiraling strings are not always aligned along screw axes of the space group in question, as was noted recently.¹⁶ Thus, while is most cases the spiraling strings formed by intermolecular interactions adapt themselves to the packing forces of screw axes in a harmonic fashion, molecules explore the Sohncke space groups and select that which allows them to interact in the energetically most desirable mode. If the two do not coincide, molecular interactions appear to take precedence, at least in some cases.¹⁶

Finally, concerning the stronger hydrogen bonds in (I) (see Table 6) there are seven intramolecular hydrogen bonds between terminal and secondary hydrogens and the $-NO_2$ oxygens, four inter-ionic hydrogen bonds between the various amino hydrogens and the oxygens of the perchlorate anions, and only two inter-ionic hydrogen bonds between adjacent cations (H9....O2 = 2.26 Å and H21....O4 = 2.23 Å). In (II) there are six intramolecular hydrogen bonds between $-NO_2$ oxygens and amino hydrogens, three to the bromide anions and four between

adjacent cations (H9....O3 = 2.35 Å, H9....O4 = 2.66 Å, H21....O1 = 2.88 Å and H21....O2 = 2.24 Å).

The central row of cations (Figure 4, near b = 1/2), indicates that there is a spiraling motion of these ions as exemplified by the N-N vector of the two trans-NO₂ ligands. Note that the mode of linkage of these strings is a little different from that normally observed for conglomerate crystals of the *cis*-dinitro species in which the spiraling string is formed exclusively by cations, while the anions (and, where relevant, waters of crystallization) link adjacent strings into a three dimensional array. In the case of (II), the hydrogen-bonded strings are aligned along the diagonal of the a and b axes and the cations are linked to one another by hydrogen bonds with the bromide and the waters of crystallization. The strings running parallel to the b axis are not hydrogen bonded to one another; in fact, the closest contacts appear to be between pairs of cations whose aliphatic CH₂ moieties face each other. Then, pairs of cations are linked to one another by hydrogen bonds to the bromide and the waters as described in the figure caption. Thus, the packing in (II) is similar to that observed in (IV) \rightarrow (VI), despite differences in space groups and decidedly different from the packing mode observed in (I), once more demonstrating the effect of the counter ion in influencing the crystallization mode.

Acknowledgments

We thank the Robert A. Welch Foundation for support of this research (Grant E-592 to I. Bernal) and for fellowships granted to F. Somoza and Ya-Chen Chen. We thank the National Science Foundation for the funds used in purchasing the diffractometer. S.S. Massoud thanks Kuwait University for Grant # SC 073.

References

- [1] I. Bernal, J. Cetrullo, J. Cai and S.S. Massoud, Struct. Chem., 6, 99 (1995).
- [2] I. Bernal and J. Cetrullo, norg. Chim. Acta, 122, 213 (1986).
- [3] S.S. Massoud, Polyhedron, 13, 1467 (1994).
- [4] I. Bernal, J. Myrczek and J. Cai, Polyhedron, 12, 1149 (1993).
- [5] I. Bernal, J. Cetrullo, J. Myrczek and S.S. Massoud, J. Coord. Chem., 30, 39 (1993).
- [6] I. Bernal and J. Cetrullo, Inorg. Chim. Acta, 120, 109, (1986).
- [7] Galbraith Laboratories, Inc., 2323 Sycamore Dr., Knoxville, TN, 37921.
- [8] TEXRAY-230 is a 1985 modification of the SDP-Plus⁹ set of X-ray crystallographic programs distributed by Molecular Structure Corporation, 3200 Research Forest Dr., The Woodlands, TX 77386 for use with their automation of the CAD4 diffractometer. Version of 1985.
- [9] SDP-Plus is the Enraf-Nonius Corporation X-ray diffraction data processing programs distributed by B. A. Frenz & Associates, 209 University Dr. East, College Station, TX, 77840. Verstion of 1985.

- [10] The NRCVAX Crystal Structure System, A.C. Larson, F.L. Lee, Y. Le Page, M. Webster, J.P. Charland & E.J. Gabe, as adapted for PC use by Peter S. White, University of North Carolina, Chapel Hill, NC., 27599-3290.
- [11] R.B. Roof, 'A Theoretical Extension of the Reduced Cell Concept in Crystallography', Report LA-4038, Los Alamos Scientific Laboratory, 1969.
- [12] N. Payne, Inorg. Chem., 11, 1376 (1972).
- [13] D.T. Cromer and J.T. Waber, J.T., 'International Tables for X-Ray Crystallography', The Kynoch Press, Birmingham, England, 1975; vol. IV, Tables 2.2.8 and 2.3.1, respectively, for the scattering factor curves and the anomalous dispersion values.
- [14] K. Yamanari, J. Hidaka and Y. Shimura, Bull. Chem. Soc. Japan, 46, 3724 (1972).
- [15] (a)I. Bernal, J. Myrczek and J. Cai, *Polyhedron*, 12, 1149 (1993). (b) I. Bernal, X. Xia and F. Somoza, manuscript in preparation (c) I. Bernal, X. Xia and F. Somoza, *Inorg. Chim. Acta*, submitted 1995.
- [16] I. Bernal, J. Cetrullo, F. Somoza, J.S. Jr. Ricci, R. Lewis and S.S. Massoud, J. Coord. Chem., accepted, 1995.
- [17] I. Bernal and H. Vogt, J. Organometal. Chem., 502, 103 (1995).
- [18] J.D. Korp, I. Bernal, R.F. Miller, J.C. Turley, L. Williams and G.E. Martin, J. Cryst. Molec. Struct., 8, 127 (1978).

SUPPLEMENTARY MATERIAL AVAILABLE:

Compound (I): Anisotropic thermal parameters (1 page), structure factor table (13 pages). Compound (II): Anisotropic thermal parameters (1 page), structure factor table (13 pages). These can be obtained directly from I. Bernal in printed or diskette form.